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“In	
  the	
  beginning	
  …	
  the	
  Earth	
  was	
  
without	
  form	
  …	
  ”	
  (Genesis,	
  KJV)	
  

(Jackson Pollack) 



The	
  World	
  is	
  Complex	
  –	
  but	
  Structured	
  
	
  
Organisms	
  extract	
  “meaning”	
  and	
  discern	
  “order”	
  in	
  the	
  
world.	
  

	
  
Living	
  things	
  are	
  the	
  end	
  result	
  of	
  an	
  immensely	
  
numerous	
  succession	
  of	
  	
  ancestors	
  that	
  have	
  survived	
  
and	
  evolved	
  to	
  successfully	
  discern	
  and	
  exploit	
  
structure	
  in	
  the	
  world.	
  

	
  
There	
  must	
  be	
  structure	
  and	
  regulariSes	
  in	
  the	
  world	
  that	
  
over	
  evoluSonary	
  Sme	
  we	
  have	
  become	
  “aTuned	
  to”	
  –	
  
an	
  “evolu(onary	
  a	
  priori”	
  [WukeSts	
  1990].	
  



The	
  World	
  –	
  How	
  to	
  discern	
  	
  structure	
  
and	
  manage	
  its	
  complexity?	
  

•  Identify and exploit relationships and connections (graph structure) 
 
•   Determine utility (importance), likelihoods & causal effects (probabilities) 



Encoding	
  InformaSon	
  About	
  the	
  World	
  
•  Code	
  informaSon	
  either	
  extensionally	
  or	
  Intensionally	
  

–  Intension	
  versus	
  Extension	
  
	
  

•  Extensional	
  coding	
  explicitly	
  	
  lists	
  instan(ated	
  events,	
  things,	
  and	
  
facts	
  about	
  the	
  world	
  
–  Difficult	
  to	
  add	
  informaSon	
  in	
  a	
  consistent	
  manner	
  
–  Difficult	
  to	
  reason	
  with	
  (uses	
  logic-­‐based	
  reasoning).	
  	
  	
  
–  Number	
  of	
  instanSated	
  facts	
  to	
  encode	
  is	
  huge	
  

	
  
•  Intensional	
  coding	
  encodes	
  rela(onships	
  and	
  possible	
  states	
  of	
  	
  

affairs	
  (proposiSons)	
  about	
  events,	
  things,	
  facts	
  and	
  	
  dependencies	
  	
  
–  Easy	
  to	
  expand	
  
–  Easy	
  to	
  visualize	
  graphically	
  
–  Encodes	
  facts	
  about	
  the	
  world	
  implicitly	
  not	
  explicitly	
  	
  



Complexity	
  of	
  a	
  Fully	
  Interrelated	
  World	
  
The world can be modeled as interrelated  
“things + attributes” that occur or co-occur  
with certain probabilities.  
 
Thus we need to learn what “things” exist and their 
“states”, singly and collectively.  We can think of a 
“thing” in a given “state” as denoting a situation k, 
where       = 1 or -1  depending on that situation  
either being the case or not being the case.   
 
Therefore we can model the world graphically and  
The state of the world probabilistically 
 
However general, a fully connected world 
is too complex to handle.  If there are n situations  
In the world then the number of independent  
probability values to specify is 2n - 1 
 
For example if n = 300, then the number of  
probability values to specify is  2300 » 1090 , 
a value larger than the number of electrons,  
protons, and neutrons estimated to exist In the  
entire known universe …  
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The	
  World	
  must	
  have	
  Exploitable	
  Structure	
  

•  “Things”	
  have	
  causal	
  and	
  influenSal	
  interacSons	
  
–  ProbabilisSc	
  relaSonships	
  are	
  oben	
  Markovian	
  
	
  

•  Directed	
  interacSons,	
  generally	
  limited	
  or	
  localized	
  
–  InterconnecSvity	
  is	
  limited,	
  directed	
  and	
  structured	
  

	
   This suggests “…that the fundamental structure of human knowledge 
can be represented by dependency graphs and that mental tracing of 
links in these graphs are the basic steps in querying and updating  
that knowledge” [Pearl 1986]. 



This	
  shows	
  why	
  condi:onal	
  
Independences	
  are	
  Important	
  

E.g: n = 100 and nodes all Boolean (0-1)   
 
Fully dependent/connected world: 
 
        2100 » 1030 probability values 
 
This extreme is too complex! 
 
 
Fully independent/disconnected world: 
 
        100 – 1 = 99 probability values 
 
This extreme is too simple! 
 
 
The middle ground of “sparse’’ connectivity and 
exploiting conditional dependencies can be just right.  



Example:	
  DGs	
  &	
  Markovian	
  Structure	
  

We can understand a Directed Graph  by  
focusing only on the nodes that casually  
influence a particular node of interest. 
 
We can understand its Markovian Structure  
by determining the transition probabilities  
p(xi | xj) for xj  given xi 



PGMs	
  as	
  “DistribuSon	
  Filters”	
  

[Bishop 2006] 

Probabilistic Graphical Models (PGMs) impose strong constraints  
which explains why using them can be effective, even if the node conditional  
probabilities are not accurately or precisely known, as long as the node conditional  
probabilities are qualitatively and comparatively reasonable [Pearl 1986,1988]. 
 
   “This suggests that the notions of dependence and conditional dependence 
     are more basic to human reasoning than are the numerical values attached 
     to probability judgments” [Pearl 1986].  
 
Directed Acyclic Graphs (DAGs) are among the most tractable PGMs, but still have 
limitations.  E.g., they do not admit feedback (aka reentry or reverberation).   

DAG 



Taxonomy	
  of	
  PGMs	
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Some members of the graphical models family and their uses. Nodes further from the Graphical Models
root node are loosely speaking specialised versions of their parents. We discuss many of these models in
Part I, although some of the more specialised models are deferred to later Parts of the book.
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